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SUMMARY

The �rst of a two-paper series, this paper introduces a new decomposition not of the hyperbolic �ux
vector but of the �ux vector Jacobian. The paper then details for the Euler and Navier–Stokes equations
an intrinsically in�nite directional upstream-bias formulation that rests on the mathematics and physics
of multi-dimensional acoustics and convection. Based upon characteristic velocities, this formulation
introduces the upstream bias directly at the di�erential equation level, before the spatial discretization,
within a characteristics-bias governing system. Through a decomposition of the Euler �ux divergence
into multi-dimensional acoustics and convection–acoustics components, this characteristics-bias system
induces consistent upstream bias along all directions of spatial wave propagation, with anisotropic
variable-strength upstreaming that correlates with the spatial distribution of characteristic velocities.
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1. INTRODUCTION

This paper provides the �rst part of a two-part investigation into the development of contin-
uum, i.e. non-discrete, multi-dimensional and in�nite-directional characteristics-bias
approximations of the Euler and Navier–Stokes equations and subsequent computational im-
plementation. The second part [1], also featured in this Journal, presents a �nite element and
implicit Runge–Kutta implementation and applications to smooth and shocked aerodynamic
and gas dynamic transonic and supersonic �ows. This paper details the development and
characteristics analysis of the Acoustic–Convection Upstream Resolution algorithm.
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Multi-dimensional upwind Euler and Navier–Stokes solvers remain of considerable inter-
est computationally to investigate realistic �ows on arbitrary grids. Numerous �nite element,
di�erence and volume algorithms have progressed somewhat independently from the physics
of acoustics and convection, the wave propagation mechanisms within gas dynamic �ows.
The dissipation mechanisms, or upwind schemes, within these algorithms have been devel-
oped at the discrete level, in connection with a speci�c grid or pattern of computational
cells.
Several �nite element solvers have either utilized modi�cations of the test space or

introduced Taylor’s series-based dissipation terms [2] to generate stable algorithms. The math-
ematical developments in these fundamental contributions have remained independent of char-
acteristics theory. Upwind �nite element methods for scalar equations have also been devel-
oped [3] including the Streamline Upwind Petrov–Galerkin (SUPG) formulation [4–8], also
known as the streamline di�usion (SD) method [5]. Extensions to systems are recognized to
remain heuristic, the induced upwinding is not necessarily in the streamline direction, and ad-
ditional ‘shock capturing’ terms are needed for computing essentially non-oscillatory shocked
�ows [9].
Intense research is also focused on multi-dimensional �nite-volume upwind schemes that

induce upwinding along a few signi�cant directions. An early e�ort [10] generated a grid-
independent upwind scheme based on directional upwinding along possible shock wave di-
rections. This approach later enjoyed addition of local Riemann solutions [11] along several
upwind directions including the �ow-velocity, speed-gradient and pressure-gradient directions.
An alternative second-order rotated upwind scheme [12] used �ux-di�erence splitting (FDS)
along two orthogonal directions determined on the basis of the local pressure gradient. Other
approaches involved approximate multi-dimensional Riemann solvers and local wave decom-
positions, with wave modelling [13–16]. In these formulations, some wave directions and
strengths are �xed a priori to generate a viable CFD algorithm.
Di�culties remain in these methods both in assessing the magnitude of the induced multi-

dimensional upwind di�usion and determining whether consistent upwinding exists not only
over the selected directions, but along all �ow-�eld wave-propagation directions. Additional
data �ltering or upwind-direction freezing may also be required for convergence and essential
monotonicity. More fundamentally, current multi-dimensional upwind schemes are recognized
to rest upon much less theoretical support than their one-dimensional counterparts [17].
This two-part presentation expounds the multi-dimensional formulation of the acoustics–

convection upstream resolution Euler solver introduced in Reference [18]. That reference arti-
cle documented the algorithm for the quasi-one-dimensional Euler equations. The organization
of that article is followed in this paper, which begins by describing an alternative multi-
dimensional upstream-bias formulation that encompasses and generalizes both �ux-vector and
FDS schemes. Named �ux Jacobian decomposition (FJD) and developed for multi-dimensional
hyperbolic and parabolic systems, this decomposition splits not the �ux vector, but rather the
�ux Jacobian. An upstream-bias integral average of the FJD along principal wave-propagation
directions then directly yields not only an intrinsically multi-dimensional upstream-bias for-
mulation, but also an associated necessary stability condition. Applied to a general
multidimensional hyperbolic or parabolic system, the combination of FJD and upstream-bias
integral averaging generates the upstream-bias approximation directly at the di�erential equa-
tion level, before any discretization, within a ‘companion’ characteristics-bias system asso-
ciated with the governing system. A conventional centred or �nite element Galerkin spatial
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approximation of this companion system then automatically and directly generates a genuinely
multi-dimensional upstream-bias discrete analogue of the given system [1].
Developed for the multi-dimensional Euler and Navier–Stokes equations with general equi-

librium equations of state, the acoustics–convection upstream resolution algorithm consists of
a speci�c instance of FJD and integral averaging, an instance that rests on a decomposition of
the multi-dimensional Euler Jacobian into matrix components that physically represent multi-
dimensional acoustics and convection, the wave propagation mechanisms within gas dynamic
�ows. In particular, this development reveals that no single decomposition of the Euler �ux
components themselves can contain separate terms that re�ect multi-dimensional acoustics.
This formulation induces the upstream bias along all �ow-�eld directions of wave propaga-
tion and enjoys a consistent theoretical support that rests upon the mathematics and physics
of multi-dimensional acoustic and convection characteristic wave propagation.
This paper is organized in seven sections. After the introductory considerations in

Section 1, Sections 2 and 3 delineate both the Euler as well as Navier–Stokes equations and
a reference polar characteristics analysis. This analysis provides the necessary background
for the multi-dimensional non-discrete upstream-bias formulation, in Section 4, and acoustics–
convection decomposition of the Euler �ux divergence, in Section 5. Section 6 then details the
multi-dimensionality and in�nite directionality of the formulation, with Section 7 summarizing
concluding remarks.

2. NAVIER–STOKES AND EULER EQUATIONS

With respect to an inertial Cartesian reference frame, with implied summation on repeated
indices, the classical Navier–Stokes and Euler conservation law system [19, 20] is

@q
@t
+

@fj(q)
@xj

− @f�
j

@xj
=0 (1)

which consists of the continuity, linear-momentum and total-energy equations. For three-
dimensional formulations, 16j63, and with R denoting the real-number �eld, the indepen-
dent variable (x; t), x≡ (x1; x2; x3), in (1) varies in the domain D≡�× [to; tf], [to; tf]⊂R+,
�⊂R3. When the ‘viscosity’ �ux f�

j , 16j63, identically vanishes, this system is hyperbolic
when the eigenvalues of the Jacobian matrix (@fj(q)=@q)nj are all real for arbitrary unit vec-
tors n with direction cosines nj, the components of n along the coordinate axes. The system is
also termed ‘strongly’ hyperbolic when this matrix possess a full set of eigenvectors [21, 22].
With reference to Figure 1, for a representative 2-D �ow, the unit vector n indicates in the
�ow �eld the propagation direction of plane waves with speeds equal to the eigenvalues of
(@fj(q)=@q)nj, as elaborated in Section 3.
The �gure also displays the unit vectors a and aN , respectively, pointing in the streamline

and cross�ow directions, vectors that provide the two principal directions for the decompo-
sition developed in Sections 3–6. The integral formulation for system (1), [23, 24], seeks a
solution q∈H1(�), subject to prescribed boundary conditions on @�≡ ��\�, such that for all
test functions ŵ∈H1(�)∫

�

(
ŵ

@q
@t
+ ŵ

@fj

@xj
− @ŵ

@xj
f�
j

)
d� +

∮
@�

ŵf�
j nj d(@�)=0 (2)
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Figure 1. Reference unit vectors.

where nj, 16j63, denotes the jth component of the outward pointing unit vector perpendic-
ular to @�. For 2-D �ows, 16j62, the dependent-variable array q= q(x; t) as well as the
inviscid and viscous �ux ‘vector’ components fj and f�

j are then de�ned as

q≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�

m1

m2

E

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

; f1 ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1
m1
�

m1 + p

m1
�

m2

m1
�
(E + p)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

; f2 ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m2
m2
�

m1

m2
�

m2 + p

m2
�
(E + p)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

; f�
j ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0

�1j

�2j
mi

�
�ij − qFj

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3)

In the array q, the variables �, m1, m2, and E, respectively, denote static density and volume-
speci�c linear momentum components and total energy. The Eulerian �ow velocity u, with
Cartesian components uj, 16j62, is de�ned as u≡m=�. In the viscous �ux f�

j , the terms �ij
and qFj [19], respectively, indicate the components of the deviatoric stress tensor and the
component of the Fourier heat-conduction �ux as

�ij=�
(
@ui

@xj
+

@uj

@xi

)
+ ��

@uk

@xk
�j
i ; qFj = − k

@T
@xj

(4)

where �, ��, k, and T , respectively, denote the �rst and second coe�cient of dynamic vis-
cosity, coe�cient of thermal conductivity and static temperature. With respect to the two co-
e�cients of viscosity, they are classically related by specifying equality between mechanical
and thermodynamic pressure, which leads to ��= −2�=3, traditionally known as Stokes’ hypo-
thesis [19].
For any homogeneous equilibrium gas, pressure p can be expressed as a function of two

other thermodynamic variables [25]. They are density � and mass-speci�c internal energy �,
in this case, since they are readily available from the Euler and Navier–Stokes system (1).
The expressions for � and the pressure equation of state become

�≡ E
�

− 1
2�2

(m21 +m22); p=p(�; �)=p
(
�;

E
�

− 1
2�2

(m21 +m22)
)

(5)
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According to this expression, the Jacobian derivatives of p with respect to q, for the Jacobian
@fj=@q of fj(q), are not all independent of one another. The derivatives of (5) with respect
to m1, m2 and E in fact satisfy the constraints

@p
@m1

∣∣∣∣
�;m2 ; E

= −m1
�

@p
@E

∣∣∣∣
�;m1 ; m2

;
@p
@m2

∣∣∣∣
�;m1 ; E

= −m2
�

@p
@E

∣∣∣∣
�;m1 ; m2

(6)

as obtained by expressing the derivatives of p with respect to m1, m2 and E in terms of
the thermodynamic derivative of p with respect to �, from the �rst expression in (5). In the
following sections, for simplicity, the abridged notation

p� ≡ @p
@�

∣∣∣∣
m1 ; m2 ; E

; pm1
≡ @p

@m1

∣∣∣∣
�;m2E

; pm2
≡ @p

@m2

∣∣∣∣
�;m1E

; pE ≡ @p
@E

∣∣∣∣
�;m1 ; m2

(7)

will denote the Jacobian derivatives of pressure. The speci�c perfect-gas expressions for (5)
follow from the internal energy and pressure equation of state as

�= cvT =
R

� − 1T; p=�RT ⇒ p=(� − 1)��=(� − 1)
(
E − 1

2�
(m21 +m22)

)
(8)

where cv, R and �= cp=cv, cp − cv=R, respectively, denote the constant-volume speci�c heat,
gas constant and speci�c-heat ratio. In terms of the Jacobian partial derivatives of p for general
equations of state, the square of the speed of sound c and the corresponding mass-speci�c
total enthalpy H can be expressed as

c2 ≡ @p
@�

∣∣∣∣
S
=p� + pE

(
E + p

�
− 1

�2
(m21 +m22)

)
; H =

E + p
�

=
c2(1 + pEM

2)− p�

pE

(9)

where M ≡ ‖u‖=c denotes the Mach number.

3. CHARACTERISTICS ANALYSIS

Within a 2-D �ow �eld, acoustic and convection waves propagate in in�nitely many directions,
on the �ow plane; along each direction the associated propagation velocity also depends on
the Mach number. As an essential prerequisite for the developments in Section 4, this section
presents an intrinsically multi-dimensional characteristics analysis based on a non-linear wave-
like form of the solution q. This analysis leads to the spatial distribution of multi-dimensional
propagation velocities and shows that among all propagation directions the streamline and
cross�ow directions are principal propagation directions. This line of enquiry is highlighted
because it yields speci�c conditions for a physically coherent upstream bias formulation that
remains consistent with multi-dimensional acoustic and convection wave propagation.

3.1. Characteristic velocity components

The non-linear wave-like form of q is expressed as

q= q(	1); 	1 =x · n − �(q)t= xjnj − �(q)t (10)
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where n denotes a space-domain propagation-direction unit vector, independent of (x; t), and
�= �(q) indicates a wave-propagation velocity component along the n direction. This solution-
dependent velocity component is determined by enforcing the condition that the non-linear
wave-like solution (10) satis�es the Euler equations. For non-linear �= �(q) too [21, 22], this
condition yields the eigenvalue problem(

−�(q)I +
@fj

@q
nj

)
@q
@	1

= 0 (11)

For non-trivial solutions @q=@	1, hence non-trivial q= q(	1), the characteristic velocity com-
ponents � are thus the eigenvalues of the linear combination of �ux vector Jacobians

@fj(q)
@q

nj =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 n1 n2 0

−u1ujnj + p�n1 u1n1 + ujnj + pm1
n1 u1n2 + pm2

n1 pEn1

−u2ujnj + p�n2 u2n1 + pm1
n2 u2n2 + ujnj + pm2

n2 pEn2

ujnj(p� − H) Hn1 + ujnjpm1
Hn2 + ujnjpm2

ujnj(1 + pE)

⎞
⎟⎟⎟⎟⎟⎟⎠
(12)

For general equations of state, these eigenvalues have been exactly determined in closed
form as

�dE
1;2 = ujnj; �dE

3;4 = ujnj ± (p� + pE (H − ujuj))1=2 (13)

where superscript dE signi�es dimensional Euler eigenvalues. Of interest, eigenvalues �dE
3;4 di-

rectly incorporate a sound speed expression that coincides with the isentropic partial derivative
of pressure (9). Through such an expression, these equilibrium-gas eigenvalues become the
well-known expressions

�dE
1;2 = ujnj; �dE

3;4 = ujnj ± c (14)

which have the same familiar form as the perfect-gas eigenvalues. The non-dimensional form
of (14) follows from division by c, which supplies the Mach-number-dependent expressions

�
E

1;2 = vjnjM; �
E

3;4 = vjnjM ± 1 (15)

where v1 and v2 denote the components of a unit vector v in the velocity u direction.
As an elaboration over these expressions, the contraction vjnj, i.e. the inner product of the

two unit vectors n and v, is further expressed in terms of the cosine of the angle (
 − 
v)
between n and v, where 
 and 
v, respectively, denote the angle between n and the x1-axis
and the angle between v and the x1-axis. Eigenvalues (15) thus become

�
E

1;2 = cos(
 − 
v)M; �
E

3;4 = cos(
 − 
v)M ± 1 (16)

These expressions, in particular, imply that the Euler eigenvalues achieve their extrema for

= 
v, hence when n points in the streamline direction, whereas for n pointing in the cross�ow
direction, hence 
=90◦ + 
v, these eigenvalues no longer depend upon M .
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The convection eigenvalues �
E

1;2 vanish when cos(
 − 
v)=0, hence for n perpendicu-
lar to the streamline direction, or, equivalently, pointing in the cross�ow direction. Since
‖ cos(
 − 
v)‖61, the acoustic–convection eigenvalues �

E

3;4 can only vanish for M¿1, hence
for supersonic �ows. For these �ows, �

E

3;4 = 0 when

∓ cos(
 − 
v)=± sin((
 − 90◦)− 
v)=
1
M

(17)

hence for n perpendicular to the Mach lines, for ±((
 − 90◦)− 
v) corresponds to the angle
between a Mach line and the streamline, from the well-known second expression in (17). The
lines that are perpendicular to the Mach lines will be called ‘conjugate’ lines.
The lines that are perpendicular to n for vanishing eigenvalues �

E

1;2 and �
E

3;4 thus, respec-
tively, become the streamline and Mach lines. This result is not coincidental, for vanishing
eigenvalues �

E

1;4 correspond to wave-like solutions of the steady Euler equations, for which
the streamline and Mach lines are characteristic-wave propagation lines.

3.2. Polar variation of characteristic speeds

As a novel way of visualizing the Euler eigenvalues, Figures 2 and 3 present the polar vari-
ation of the absolute values of eigenvalues (15) for subsonic, sonic and supersonic Mach
numbers, in a neighbourhood of a �ow �eld point P in the (x1; x2) plane. These variations are
obtained for a variable unit vector n≡ (cos 
; sin 
) and �xed unit vector v, in this represen-
tative case inclined by +30◦ with respect to the x1-axis. A collective inspection of all these
diagrams reveals three shared features for all Mach numbers. The maximum characteristic
speeds occur in the velocity direction, i.e. along a streamline, as noted before. Secondly, all

Figure 2. Polar variation of subsonic wave speeds.
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Figure 3. Polar variation of supersonic wave speeds.

the characteristic speeds are symmetrically distributed about the streamline direction. Thirdly,
the eigenvalue pairs (‖�E

1‖; ‖�
E

2‖) and (‖�
E

3‖; ‖�
E

4‖) remain mirror skew-symmetric with respect
to the cross�ow direction, in the sense that the curves representative of ‖�E

2‖ and ‖�E

4‖ become
the respective mirror images of the variations of ‖�E

1‖ and ‖�E

3‖ with reference to this direction.
The streamline and cross�ow directions, therefore, become two fundamental wave-propagation
axes.
For vanishing Mach numbers, the acoustic–convection propagation curves in the �gure

approach two circumferences. The distribution of propagation speeds in this case is there-
fore isotropic, which corresponds to the direction-invariant propagation of acoustic waves. As
the Mach number increases from zero, the curves in the �gure progressively become circular
asymmetric, which corresponds to anisotropic wave propagation. For M =0:5 this anisotropy is
already evident and becomes more pronounced for higher Mach numbers. The non-dimensional
characteristic speeds then approach 1 in the region about the cross�ow direction, which corre-
sponds to essentially acoustic propagation. For all Mach numbers, the convection eigenvalues
�1;2 change sign when the n direction shifts from an upstream to a downstream axis with
respect to u. For this reason, the associated curves cross the polar origin. Pure convective
propagation, therefore, remains mono-axial, from upstream to downstream of P, and the axis
of this type of wave propagation is the streamline.
For subsonic Mach numbers the acoustic–convection eigenvalues �

E

3 and �
E

4, respectively,
remain positive and negative for all directions. For this reason the associated curves contain the
polar origin. For subsonic �ows, therefore, acoustic–convection waves propagate bi-modally,
from both upstream and downstream toward and away from point P, along all directions
radiating from P.
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Beginning at the sonic state, this pattern drastically changes for supersonic Mach numbers,
as illustrated in Figure 3. In this case both �

E

3 and �
E

4 change algebraic sign when the sense
of n shifts from upstream to downstream of P along a streamline. For this reason, the associ-
ated curves cross the polar origin. For supersonic �ows, therefore, acoustic–convection wave
propagation becomes mono-axial along a streamline, from upstream to downstream of P;
nevertheless pure acoustic propagation remains bi-modal about the cross�ow direction, for
eigenvalues �

E

3;4 remain of mixed algebraic sign outside the region that contains the stream-
line between the Mach lines. The following sections develop an upstream-bias formulation
with magnitude of upstream bias that re�ects this distribution of characteristic speeds about
the streamline and cross�ow directions.

4. NON-DISCRETE UPSTREAM-BIAS APPROXIMATION

The non-discrete upstream-bias approximation is developed for a non-linear hyperbolic or
parabolic system

@q
@t
+

@fj(q)
@xj

− @f�
j

@xj
=0 (18)

with implied summation on repeated subscript indices. When the ‘viscosity’ term f�
j identically

vanishes, this system reduces to a �rst-order hyperbolic system. Equivalent to this governing
system is the integral statement

∫
�̂
ŵ
(
@q
@t
+

@fj(q)
@xj

− @f�
j

@xj

)
d�=0 (19)

when it holds for arbitrary subdomains �̂⊆� and test functions ŵ∈H1(�̂)⊆H1(�) with
compact support in �̂ [21, 22].
The non-discrete formulation induces a multi-dimensional upstream bias directly in the

continuum, at the partial-di�erential equation level, before the eventual discretization on a
prescribed grid. This continuum upstream-bias formulation derives from a characteristics-bias
integral statement associated with (18). With reference to (19), the characteristic-bias integral
is then de�ned as

∫
�̂
ŵ

(
@q
@t
+

@fCj
@xj

− @f�
j

@xj

)
d�=0 (20)

where fCj corresponds to a characteristics �ux that automatically induces within (20) a multi-
dimensional and in�nite directional upstream-bias approximation for the hyperbolic �ux di-
vergence @fj=@xj. Most importantly, since the characteristics �ux is developed independently
and before any discretization, a genuinely multi-dimensional upstream-bias approximation for
the governing equations (1), (18) on arbitrary grids directly results from a straightforward
centred discretization of the characteristics �ux on the given grid.
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4.1. Characteristics-bias �ux

To develop an intrinsically multi-dimensional and in�nite-directional characteristics-bias �ux
fCj , this paper introduces a new decomposition, not of the �ux vector, but of the hyperbolic-
�ux Jacobian, termed a FJD. Generalizing and encompassing �ux-vector and FDSs, as sum-
marized in Section 4.2, this decomposition expresses the hyperbolic-�ux Jacobian as the sum
of L contributions in the form

@fj

@q
=

L∑
‘=1

�‘A‘j ⇒ @fj

@xj
=

L∑
‘=1

�‘A‘j
@q
@xj

(21)

where �‘ denotes a linear-combination function, possibly depending upon q, A‘j corresponds
to a �ux-Jacobian matrix component such that the matrix A‘jnj has uniform-sign eigenvalues
within a conical region spanned by a unit vector n, with components nj, within the �ow space.
An integral average of the hyperbolic �ux divergence @fj=@xj as expressed through decom-

position (21) becomes

∫
�̂
ŵ

@fj

@xj
d�=

∫
�̂

L∑
‘=1

ŵ�‘A‘j
@q
@xj

d� (22)

By comparison, the �ux fCj is de�ned by way of an upstream-bias integral average as

∫
�̂
ŵ

@fCj
@xj

d�≡
∫
�̂

L∑
‘=1
(ŵ +  �‘ŵ)�‘A‘j

@q
@xj

d� (23)

where the RHS integral provides an upstream bias for each matrix component within the FJD
in (21).
As documented in Reference [18], the positive  in (23), 0¡ 61, stands for an ‘upstream-

bias’ controller, which automatically adjusts the amount of induced upstream-bias di�usion,
depending on local solution non-smoothness, with  =0 corresponding to a centred dis-
cretization, on any grid, and  =1 generating a fully upwind formulation. In regions of
solutions smoothness,  decreases to a minimum for accuracy, whereas in the neighbourhood
of shocks,  increases to a maximum for an essentially non-oscillatory stable shock capturing.
The expression �‘ŵ denotes a directional variation of the test function ŵ along an upstream-

bias principal direction, the axis of a conical region within the �ow space, as

�‘ŵ≡ @ŵ
@xj

�‘xj=
@ŵ
@xj

aj‘”; �‘xj ≡ aj‘” (24)

In this expansion, ” denotes a reference length and aj‘, 16j63, denotes the jth component of
the unit vector a‘ in the direction of the ‘‘th’ upstream-bias principal direction. This variation
induces the appropriate upstream bias for the test function ŵ for each ‘‘’ component within
(23). Depending on the physical signi�cance, magnitude and algebraic sign of the eigenvalues
of A‘jnj, the variation �‘ŵ can vanish or become algebraically positive or negative, which
corresponds to an upstream bias, respectively, in the negative or positive sense of the axis of
each conical region.
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An integration by parts of the RHS of (23) and subsequent comparison with its LHS
generates the following expression for the divergence of the characteristics �ux fCj :

@fCj
@xj

=
@fj

@xj
− @

@xi

(
” 

L∑
‘=1

ai‘�‘A‘j
@q
@xj

)
(25)

This expression exhibits an upstream-bias arti�cial di�usion, in the form of a second-order
di�erential expression with associated upstream-bias matrix

A≡ ni

(
L∑

‘=1
ai‘�‘A‘j

)
nj (26)

where ni indicates the ith direction cosine of a unit vector n along an arbitrary wave-
propagation direction, as depicted in Figure 1. For physical consistency of the upstream bias
in (23), (25) as well as associated mathematical stability of the corresponding second-order
di�erential expression, all the eigenvalues of this upstream-bias matrix must be positive at
every �ow-�eld point and for any wave-propagation direction n [21, 22]. Implying a consis-
tent upstream bias along all directions radiating from any �ow �eld point, this requirement
becomes a fundamental upstream-bias stability condition.
On the basis of these developments, the procedure for generating a speci�c characteristics

bias involves the following steps. Firstly, for the given hyperbolic �ux, a FJD (22) is de-
veloped, as guided by a characteristics analysis analogous to the one in Section 3. Secondly,
speci�c constraints on the FJD parameters �‘ and direction-cosine components ai‘ are estab-
lished, as directed by the upstream-bias stability condition. Section 5 shows how this procedure
generates a characteristics-bias �ux for the hyperbolic �ux in the Euler and Navier–Stokes
equations.

4.2. Incorporation of FVS and FDSs

The FJD procedure generalizes and encompasses traditional FVS and FDS formulations. Con-
sider the representative �ux-vector splitting (FVS) of the Euler �ux as

fj(q)=f+j (q) + f−
j (q) (27)

where the Jacobian matrices of (@f+j =@q)nj and (@f−
j =@q)nj, respectively, possess non-negative

and non-positive eigenvalues within a conical region with axis with direction cosines nj,
16j63. The FJD expression (21) encompasses (27) with L=2 as

L∑
‘=1

�‘A‘j=
@f+j
@q

+
@f−

j

@q
; �1 = 1; �2 = 1 (28)

The corresponding characteristics-bias �ux divergence for this representative FVS accrues from
(25) as

@fCj
@xj

=
@fj

@xj
− @

@xi

(
” 

(
a+i

@f+j
@xj

− a−
i

@f−
j

@xj

))
(29)
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which generalizes in the continuum the traditional numerical �ux formulae for FVS construc-
tions. The associated upstream-bias matrix A is

A=
3∑

i; j=1
ni

(
a+i

@f+j
@q

+ a−
i

@f−
j

@q

)
nj (30)

where the �ux components f+j and f−
j as well as the direction cosines a+i and a−

i , frequently
a−
i = − a+i , should be chosen to satisfy the upstream-bias stability condition on this matrix.
Consider next a representative FDS development, where the inviscid �ux Jacobian of fj is

‘split’ as

@fj

@q
=Xj�+j X

−1
j + Xj�−

j X−1
j (31)

where Xj and �j=�+j + �
−
j denote the right eigenvector matrix and eigenvalue diagonal

matrix of the Jacobian, all evaluated at special average values of q, with �+j and �−
j ,

respectively, containing non-negative and non-positive eigenvalues. The matrices at the RHS
of (31), therefore, will, respectively, possess non-negative and non-positive eigenvalues. The
FJD expression (21) encompasses (31) with L=2 as

L∑
‘=1

�‘A‘j=Xj�+j X
−1
j + Xj�−

j X−1
j ; �1 = 1; �2 = 1 (32)

The corresponding characteristics-bias divergence for this formulation accrues from (25) as

@fCj
@xj

=
@fj

@xj
− @

@xi

(
” 

(
a+i

3∑
j=1
(Xj�+j X

−1
j ) + a−

i

3∑
j=1
(Xj�−

j X−1
j )

)
@q
@xj

)

=
@fj

@xj
− @

@xi

(
” 

3∑
j=1

Xj(a+i �
+
j + a−

i �
−
j )X

−1
j

@q
@xj

)
(33)

which generalizes in the continuum the traditional numerical �ux formulae for FDS construc-
tions. The associated upstream-bias matrix A is

A=
3∑

i; j=1
niXj(a+i �

+
j + a−

i �
−
j )X

−1
j nj (34)

where the eigenvalue-matrix components �+j and �
−
j as well as the direction cosines a+i and

a−
i , frequently a−

i =−a+i , should be chosen to satisfy the upstream-bias stability condition on
this matrix.

5. ACOUSTICS–CONVECTION CHARACTERISTICS EULER FLUX

As a guiding principle in formulating this particular Euler FJD, the form of the eventual
characteristics-bias �ux divergence should minimally depart from the form of the Euler �ux

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1233–1260



ACOUSTICS–CONVECTION UPSTREAM RESOLUTION ALGORITHM—PART I 1245

divergence, both for e�ciency of implementation and accuracy of numerical computations.
The acoustics–convection FJD consists of components that genuinely model the physics of
multi-dimensional acoustics and convection. These components lead to an algorithm that com-
bines the computational simplicity of FVS with the accuracy and stability of FDS and also
feature eigenvalues with uniform algebraic sign. This formulation eliminates an unstable linear-
dependence problem in steady low-Mach-number �ows and satis�es by design the upstream-
bias stability condition. As the Mach number increases, the formulation smoothly approaches
and then becomes an upstream-bias approximation of the entire �ux divergence, along the
principal streamline direction.

5.1. Convection and pressure-gradient components

For supersonic �ows, the Euler eigenvalues (15) associated with the Jacobian @fj=@q all have
the same algebraic sign within a streamline wedge region so that within this region the entire
�ux divergence @fj=@xj can be upstream approximated along the streamline principal direction.
For subsonic �ows these eigenvalues have mixed algebraic sign and an upstream approxima-
tion for the �ux divergence along one single direction remains inconsistent with the two-way
propagation of acoustic waves. Since for subsonic �ows it is the pressure gradient in the mo-
mentum equation that induces mixed-sign eigenvalues, by suitably decreasing the contribution
from this gradient the resulting �ux-Jacobian eigenvalues all have the same algebraic sign
within a streamline wedge region and the resulting convection �ux divergence can then be
upstream approximated along one single direction.
Following this consideration, the �ux Jacobian @fj=@q is decomposed as

@fj

@q
=

[
@fq

j

@q
+ �

@fp
j

@q

]
+ (1− �)

[
@fp

j

@q

]
(35)

where fq
j and fp

j , respectively, denote the convection and pressure �ux components

fq
j (q)≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mj

mj

�
m1

mj

�
m2

mj

�
(E + p)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

mj

�
·

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�

m1

m2

E + p

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

; fp
j (q)≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0

p�j
1

p�j
2

0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(36)

Of the four eigenvalues of the pressure Jacobian (@fp
j =@q)nj, three of them identically vanish

and the fourth has been exactly determined as �p
4 =−ujnjpE . Remaining independent of the

speed of sound c, this eigenvalue becomes negligible for low Mach numbers. Considering that
all of these pressure eigenvalues vanish in these conditions, an upstream-bias approximation
of the isolated pressure gradient is unnecessary, for it would not represent acoustic or any
other propagation.
Since the eigenvalues of a matrix continuously depend on the matrix coe�cients [26] and

since for �=0 the eigenvalues of the Jacobian matrix [(@fq
j =@q) + �(@fp

j =@q)]nj all display
the same algebraic sign within a conical region with axis with components nj, it is possible
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to establish a Mach-number-dependent positive increasing function �=�(M), 06�61, so
that the eigenvalues of this Jacobian matrix retain the same sign, as � increases towards 1
for increasing subsonic M . With such a formulation, this Jacobian matrix can be upstream
biased in the streamline direction while it approaches and then becomes the complete Jacobian
matrix (@fj=@q)nj for M ¿ 1. In view of (14), for vanishing Mach number the eigenvalues
of [(@fq

j =@q) + �(@fp
j =@q)]nj can all keep the same algebraic sign, however, when �=0,

which eliminates the speed-of-sound ±c contribution from (14). Forcing the resulting eigen-
values to vanish, this elimination obliterates the acoustic components so that an upstream
bias approximation of [(@fq

j =@q) + �(@fp
j =@q)] in these conditions would inaccurately model

the contributions from acoustic waves. It follows that for low Mach numbers, an alternative
decomposition of the full Jacobian must be devised to model accurately the acoustic waves.

5.2. Acoustics components

For arbitrary Mach numbers and corresponding dependent variables �, m1, m2 and E, the
Euler �ux Jacobians can also be decomposed as

@fj

@q
=

@fq
j

@q
+

@fp
j

@q
=

@fq
j

@q
+ Aa

j + Anc
j (37)

where the matrices Aa
j and Anc

j are

Anc
j ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −�j
1 −�j

2 0

0 pm1
�j
1 pm2

�j
1 0

0 pm1
�j
2 pm2

�j
2 0

0 −c2 − p�

pE

�j
1 −c2 − p�

pE

�j
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(38)

Aa
j ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 �j
1 �j

2 0

p��
j
1 0 0 pE�

j
1

p��
j
2 0 0 pE�

j
2

0
c2 − p�

pE

�j
1

c2 − p�

pE

�j
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(39)

Note, in particular, that no �ux component of fj(q) exists, of which the Jacobian equals Aa
j ,

the system matrix of the acoustics equations. This matrix also becomes the entire �ux Jacobian
at the LHS of (37) for vanishing M . In these conditions, as shown by the �rst and fourth rows
in Aa

j , the continuity and energy equations become linearly dependent; this linear dependence
provides an additional explanation for the widely reported convergence di�culties experienced
by numerous Euler solvers for low Mach numbers. Physically, this linear dependence signi�es
that, for low Mach numbers, an inviscid �ow becomes isentropic, which obviates the need
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of an energy equation to determine �, m1, m2 and E. The formulation detailed in this paper
eliminates this linear dependence within the developed upstream-bias algorithm.
The eigenvalues of the matrix Anc

j nj have been determined in closed form as

�nc
1;3 = 0; �nc

4 =−cMpEvjnj (40)

which become in�nitesimal for vanishing M . The matrix Anc
j can be termed a ‘non-linear

coupling’ matrix, for it completes the non-linear coupling between convection and acoustics
within (37) so that the Euler eigenvalues can correspond to the sum of convection and acoustic
speeds. Since the matrix Aa

j will be used in the upstream-bias formulation for small Mach
numbers only and considering that the eigenvalues in (40) vanish both for these Mach numbers
and for n pointing in the cross�ow direction, for which vjnj=0, no need exists to involve
Anc

j in the upstream-bias approximation of the Euler �ux Jacobian.
Having been exactly determined in closed form as

�a
1;2 = 0; �a

3;4 =±c (41)

the non-vanishing eigenvalues of Aa
jnj equal the speed of sound and remain independent of

the propagation vector n, which signi�es isotropic propagation and con�rms that the matrix
Aa

j , is the ‘acoustics’ matrix. This matrix, therefore, can be used for an upstream-bias approx-
imation of the Euler and Navier–Stokes equations in the low Mach-number regime, within
the streamline region, and for any Mach number, within the cross�ow region.
For any two mutually perpendicular unit vectors a=(a1; a2) and aN =(aN

1 ; a
N
2) within a 2-D

�ow, along with implied summation on repeated indices, the acoustics component within the
Euler �ux divergence can be further decomposed as

Aa
j
@q
@xj

=Aa
jajak

@q
@xk

+ Aa
ja

N
j a

N
k
@q
@xk

(42)

For a parallel to u, this expression corresponds to a decomposition of the Euler acoustics
component into streamline and cross�ow acoustics components. Two eigenvalues of each
component vanish; the remaining eigenvalues of these separate streamline and cross�ow com-
ponents have been determined as

�s
3;4 =±cajnj; �N

3;4 =±caN
j nj (43)

which shows that the streamline eigenvalues vanish in the cross�ow direction, for ajnj=0
with nj= aN

j , and the cross�ow eigenvalues vanish in the streamline direction, for a
N
j nj=0 with

nj= aj; this observation, in particular, indicates that the streamline acoustics component can
induce no upstream bias in the cross�ow direction and, analogously, the cross�ow acoustics
component can induce no upstream bias in the streamline direction.
The two non-vanishing eigenvalues associated with the entire acoustics component at the

LHS of (42), but as expressed as the RHS combination of streamline and cross�ow compo-
nents have then been determined as

�a
3;4 = c((ajnj)2 + (aN

j nj)2)1=2; (ajnj)2 + (aN
j nj)2 =1 (44)

which shows that the square of the acoustic eigenvalues (41) equals the sum of the square of
the streamline and cross�ow acoustic eigenvalues (43). For a and aN , respectively, pointing in
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the streamline and cross�ow directions, the Euler �ux divergence can then be decomposed as

@fj(q)
@xj

=Aa
jajak

@q
@xk

+ Aa
ja

N
j a

N
k
@q
@xk

+
@fq

j

@xj
+ Anc

j
@q
@xj

(45)

Despite its zero eigenvalues, the matrix Aa
jaj has been found to feature a complete set of

eigenvectors X and thus possesses the similarity-transformation form

Aa
jaj=X�aX−1 =X�a+X−1 + X�a−X−1; �a=�a+ + �a− (46)

where the diagonal matrix �a contains eigenvalues (41) and the diagonal matrices �a+ and
�a− , respectively, contain non-negative and non-positive contributions to these eigenvalues.
The matrices X�a+X−1 and X�a−X−1, respectively, correspond to the ‘forward’ and ‘back-
ward’ acoustic-propagation matrix components of Aa

jaj. Based on these matrices, a bi-modal
upstream-bias approximation of Aa

jaj, follows from instituting a forward and a backward
upstream-bias approximation, respectively, for the forward- and backward-propagation matri-
ces in (46). Results similar to (46) then readily follow by replacing a with aN . This bi-modal
approximation also depends on the speci�c choices for the diagonal matrices �a+ and �a− ,
with di�erent choices associated to di�erent levels of accuracy and induced dissipation. The
following choices for these matrices

�a+ ≡ 1
2

⎛
⎜⎜⎜⎜⎜⎜⎝

2c 0 0 0

0 0 0 0

0 0 c 0

0 0 0 c

⎞
⎟⎟⎟⎟⎟⎟⎠

; �a− ≡ −1
2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 2c 0 0

0 0 c 0

0 0 0 c

⎞
⎟⎟⎟⎟⎟⎟⎠

(47)

directly yield particularly simple forms for both the non-negative-eigenvalue matrices

|Aa
jaj| ≡X (�a+ − �a−)X−1 = cI; |Aa

ja
N
j | ≡XN (�

a+ − �a−)X−1
N
= cI (48)

and the associated matrix products

|Aa
jaj|ak

@q
@xk

= cIak
@q
@xk

; |Aa
ja

N
j |aN

k
@q
@xk

= cIaN
k
@q
@xk

(49)

with I denoting the identity matrix. The matrices in (48), respectively, correspond to the
absolute streamline and cross�ow acoustics matrices.
The developments in this section, on the one hand, show that decomposition (45) leads to

a physically consistent representation of acoustic propagation. On the other hand, in view of
(49), an upstream-bias representation of this decomposition induces more di�usion than (35)
for increasing Mach number.

5.3. Acoustics–convection �ux-divergence decomposition

The developments in the previous two sections have established decompositions (35) and (45).
The �rst decomposition induces less di�usion than (45), for increasing Mach number, but it
cannot represent acoustic propagation for low subsonic Mach numbers; the second consistently
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models acoustic propagation, but induces more di�usion than (35) for increasing Mach num-
ber. An acoustics–convection �ux-divergence decomposition that not only induces minimal
di�usion, but also models acoustic propagation is thus established as a linear combination of
(35) and (45), with linear combination parameter � and 06�; �61

@fj(q)
@xj

= �(X�a+X−1 + X�a−X−1)ak
@q
@xk

+ �(XN�
a+X−1

N
+ XN�

a−X−1
N
)aN

k
@q
@xk

+ �Anc
j

@q
@xj

+

[
@fq

j

@xj
+ (1− �)�

@fp
j

@xj

]
+ (1− �)(1− �)

@fp
j

@xj
(50)

Owing to the simplifying parameter �≡�(1 − �) and introducing the cross�ow acoustic
upstream parameter �N , with 06�; �N61, the �nal form of the acoustics–convection �ux-
divergence decomposition becomes

@fj(q)
@xj

= �(X�a+X−1 + X�a−X−1)ak
@q
@xk

+ �N(XN�
a+X−1

N
+ XN�

a−X−1
N
)aN

k
@q
@xk

+

[
@fq

j

@xj
+ �

@fp
j

@xj

]
+ (1− � − �)

@fp
j

@xj
+ �Anc

j
@q
@xj

+ (� − �N)Aa
ja

N
j a

N
k
@q
@xk

(51)

The weights � and �N , respectively, for the streamline and cross�ow acoustic components in
this expression are di�erent from each other because the streamline and cross�ow character-
istic velocity components remain di�erent from each other, following the Euler eigenvalues
(16). For increasing Mach number, furthermore, the pressure gradient term �(@fp

j =@xj) in
this decomposition also contributes to the streamline acoustic upstream bias. These consider-
ations indicate that the magnitudes of acoustic upstream bias for (51) along the streamline
and cross�ow directions will have to di�er from each other for varying M , a ‘di�erential’
upstream bias that can be instituted through the distinct weights � and �N on the streamline
and cross�ow acoustic components. With respect to the expression [(@fq

j =@xj) + �(@fp
j =@xj)],

this is enclosed in square brackets and counted as one single term because all the streamline
eigenvalues of the associated Jacobian display the same algebraic sign.
A characteristics-bias formulation from decomposition (51) is obtained following the two

principles of minimal upstream dissipation and consistent in�nite-directional upstream bias.
According to these principles, the developments in the following sections show that for M =0,
the functions � and �N equal 1, whereas the function � equals 0; for increasing M , � rapidly
decreases and vanishes, � rapidly increases and then identically equals 1, for supersonic �ows,
and �N monotonically decreases. Based on these principles, furthermore, it is unnecessary to
establish an upstream-bias formulation for the last three terms in decomposition (51) for the
following reasons. With reference to the �rst of these three terms, the preceding term between
square brackets will already contribute an upstream-bias representation for the pressure gradi-
ent; additionally, the coe�cient (1− � − �) of this term vanishes for acoustic and supersonic
�ows and three out of four eigenvalues of the Jacobian of this term identically vanish, as
discussed in Section 5.1 after Equation (36). With respect to the second of these three terms,
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an upstream bias of this term would essentially add only algebraic complexity to the formula-
tion, for its coe�cient � rapidly decreases and then vanishes for supersonic and high subsonic
Mach numbers; additionally, three out of four eigenvalues of the Jacobian of this term vanish,
as discussed in Section 5.2 after Equation (40), and the product of � and the remaining fourth
eigenvalue remains negligible for � ¿ 0. Concerning the third of these three terms, of the four
eigenvalues of its Jacobian matrix, two identically vanish and the remaining two vanish in the
streamline direction, implying no upstream bias in this direction, as discussed in Section 5.2
after results (43); additionally, an upstream-bias formulation for this term would obliterate the
acoustic cross�ow upstream bias induced by the �N(XN�

a+X−1
N
+ XN�

a−X−1
N
) matrix in (51);

as Section 6.4 shows, this cross�ow acoustics dissipation remains essential for stability of the
eventual upstream-bias formulation. Based on all these considerations, the following sections
establish a computationally e�cient characteristics-bias �ux for the Euler �ux divergence.

5.4. Multi-dimensional characteristics Euler �ux

With reference to (25), given the physical signi�cance of the terms in decomposition (51)
and algebraic signs of the corresponding eigenvalues, the associated principal direction unit
vectors for these terms are

a1 =−a2 = a5 = a; a3 =−a4 = aN ; a6 = a7 = a8 = 0 (52)

At each �ow-�eld point, a and aN remain, respectively, parallel and perpendicular to the local
velocity, with aN obtained by a 90◦-degree anti-clockwise rotation of a.
Based on (48), (49), (51), (52), the general upstream-bias expression (25) directly yields

the acoustics–convection characteristics �ux divergence

@fCj
@xj

=
@fj

@xj
− @

@xi

[
” 

(
c(�aiaj + �NaN

i a
N
j )

@q
@xj

+ ai
@fq

j

@xj
+ ai�

@fp
j

@xj

)]
(53)

In this result, the expressions (c�aiaj(@q=@xj) + ai(@f
q
j =@xj) + ai�(@f

p
j =@xj)) and

(c�NaN
i a

N
j (@q=@xj)) determine the upstream biases within, respectively, the streamline and cross-

�ow wave propagation regions. These two expressions combined then induce a consistent
upwind bias along all wave propagation regions. As M increases, the streamline acoustics
upstream bias derives more from the pressure gradient and less from the acoustics matrix,
so that for supersonic �ows the streamline upstream bias entirely results from the physical
Euler �ux divergence. The operation count for expression (53) is then comparable to that
of an FVS formulation. The terms in this expression, furthermore, directly correspond to the
physics of acoustics and convection. Expression (53) determines fCi itself, up to an arbitrary
divergence-free vector, as

fCi =fi(q)− ” 

[
c(�aiaj + �NaN

i a
N
j )

@q
@xj

+ ai
@fq

j

@xj
+ ai�

@fp
j

@xj

]
(54)

According to this result, the intrinsic multi-dimensionality of each component fCi derives
from its dependence upon the entire divergence of fq

j and fp
j . For vanishing Mach num-

bers, � and �N will approach 1 whereas � will approach 0. Under these conditions, (53)
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reduces to

@fCj
@xj

=
@fj

@xj
− @

@xi

[
” 

(
c
@q
@xi

+ ai
@fq

j

@xj

)]
(55)

which essentially induces only an acoustics upstream bias. Note that this bias becomes in-
dependent of speci�c propagation directions, for it no longer depends on (�aiaj + �NaN

i a
N
j ).

This bias, therefore, becomes isotropic, in harmony with the isotropic propagation of acoustic
waves. Observe, moreover, that the components within @fCj =@xj remain linearly independent
of one another, which avoids the linear-dependence instability in the steady low Mach-number
Euler equations. For supersonic �ows, �=0 and �=1 and (53) thus becomes

@fCj
@xj

=
@fj

@xj
− @

@xi

[
” 
(
c�NaN

i a
N
j
@q
@xj

+ ai
@fj

@xj

)]
(56)

which depends not only on the entire divergence of the Euler inviscid �ux vector, but also
on the cross�ow component of the absolute acoustics matrix. Section 6.4 shows this matrix is
needed because even for a supersonic �ow, the Euler �ux Jacobian eigenvalues �

E

3;4 in (16)
remain of mixed algebraic sign within a conical region about the cross�ow direction, due to
acoustic propagation.

6. CONSISTENT INFINITE DIRECTIONAL UPSTREAM BIAS

In Jacobian form, expression (53) becomes

@fCj
@xj

=
@fj

@xj
− @

@xi

[
” 

(
c(�aiaj + �NaN

i a
N
j )I + ai

@fq
j

@q
+ ai�

@fp
j

@q

)
@q
@xj

]
(57)

For 2-D �ows, expression (53) and this upstream-bias expression essentially depend upon
the �ve upstream-bias functions a1; a2; �; �; �N . In order to ensure physical consistency, these
functions are determined by imposing on (57) the stringent stability requirement that it should
induce an upstream-bias di�usion not just along the principal streamline and cross�ow up-
stream directions, but along all directions n=(n1; n2) radiating from any �ow-�eld point. This
is a demanding stability condition on the FJD matrix (26), which is satis�ed when all the
eigenvalues of the acoustics–convection upstream-bias matrix

A≡ ni

(
c(�aiaj + �NaN

i a
N
j )I + ai

@fq
j

@q
+ ai�

@fp
j

@q

)
nj (58)

remain positive for all M and propagation directions n.
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Despite the formidable non-linear algebraic complexity of A, all of its eigenvalues have
been analytically determined exactly in closed form. Dividing through the speed of sound c,
the non-dimensional form of these eigenvalues is

�1;2 = ni(�aiaj + �NaN
i a

N
j )nj + niaivjnjM

�3;4 = ni(�aiaj + �NaN
i a

N
j )nj + niai

(
1 +

1− �
2

pE

)
vjnjM±niai

√(
1− �
2

pEvjnjM
)2
+ � (59)

where vj denotes the jth direction cosine of a unit vector v parallel to the local velocity u. Note
that for both a= v and n= v, the functions � and � within (59) determine the corresponding
streamline upstream-bias eigenvalues, already established in Reference [18]

�1;2 = �+M; �3;4 = �+
(
1 +

1− �
2

pE

)
M±

√(
1− �
2

pEM
)2
+ � (60)

Rather than prescribing some expressions for � and � and accepting the resulting variations
for these eigenvalues, physically consistent expressions for the streamline upstream-bias eigen-
values are instead prescribed and the corresponding functions for � and � determined.

6.1. Conditions on upstream-bias functions and eigenvalues

Eigenvalues (59) are expressed as

�1;4 = �1;4(M; n) (61)

to stress their dependence upon both M and n. The �ve conditions for the determination of
the �ve functions a1; a2; �; �; �N are

a21 + a22 = 1; �1;2(M; n)¿0; �1(M; v)= �1; �4(M; v)= �4; �3;4(M; n)¿0 (62)

where �1 and �4 now denote prescribed streamline upstream-bias eigenvalues. The �rst con-
dition stipulates a as a unit vector and with the second condition it determines both a and
aN , for a and aN are mutually perpendicular. In particular, these two conditions theoretically
con�rm that the unit vectors a and aN, respectively, point along the streamline and cross�ow
directions. The third and fourth conditions stipulate that the streamline upstream-bias eigen-
values must equal prescribed eigenvalues, which leads to � and �. For the determined a, aN , �
and �, the �fth condition then establishes �N .

6.2. Streamline eigenvalue �4

This eigenvalue will correlate with the absolute Euler eigenvalue |M−1|. As a consequence, �4
will vary between 1 and 1− M for 06M61− ”M and smoothly shift from 1− M to M − 1
within the transonic layer 1− ”M6M61 + ”M , where ”M denotes a transonic-layer parameter;
in this work ”M = 1

5 . One expression for �4 that remains smooth and meets these requirements
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is the composite spline

�4(M)≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− M; 06M61− ”M

(M − 1)2
2”M

+
”M

2
; 1− ”M¡M¡1 + ”M

M − 1; 1 + ”M6M

(63)

6.3. Streamline eigenvalue �1

This eigenvalue correlates with the non-dimensional Euler eigenvalue M , but it too has to
equal 1 for M =0; it then must coincide with M for M¿1 and also remain greater than
�4, as expressed through (63), for consistency with the Euler eigenvalues (15) and complete
separation of eigenvalues (59). This condition in particular implies �1¿ 1

2 . It thus follows
that �1 will vary between 1 and M for 06M6 1

2 + ”M . An expression for �1 = �1(M) that
remains smooth and meets all of these requirements is the composite spline

�1(M)≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1− M +
”M

2
(2M)1=”M ; 06M¡ 1

2

(M − 1
2 )
2

2”M

+
1+ ”M

2
; 1

26M¡ 1
2 + ”M

M; 1
2 + ”M6M

(64)

6.4. Upstream-bias functions a, �, � and �N

These functions are used in actual computations based on the characteristics �ux divergence
(53). In the eigenvalues �1;2 in (59), the components

ni�aiajnj= �(ajnj)2; ni�NaN
i a

N
j nj= �N(aN

j nj)2 (65)

are already non-negative for non-negative � and �N . The eigenvalues �1;2, therefore, will
remain non-negative for all positive � and �N , including �→ 0 and �N → 0, when the additional
component niaivjnjM remains non-negative for all M . This requirement is met along with the
�rst condition in (62) when a= v, for

niaivjnjM =M (vjnj)2¿0 (66)

This �nding is not surprising, for the streamline direction is a principal characteristic direction.
From �1 and �4 in (60), the corresponding expressions for both �= �(M) and �= �(M)

are then directly and exactly determined as

�(M)= �1(M)− M; �(M)=
(�1(M)− �4(M))(�1(M)− �4(M) + pEM)

1 + pEM (�1(M)− �4(M))
(67)

where according to the third and fourth conditions in (62) the streamline eigenvalues �4 and �1
are, respectively, given by (63), (64).
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For the determination of �N = �N(M) from �3;4(M; n)¿0 in (62), note that a= v remains
perpendicular to aN , while niai and niaN

i denote the vector ‘dot’ products between the unit
vector n and the unit vectors a and aN , respectively. Accordingly,

niai= cos �
; niaN
i a

N
j nj= sin

2 �
; �
≡ 
 − 
v (68)

where 
 and 
v denote the inclination angles between the x1-axis and n and v, respectively.
For eigenvalue �4 = �4(M; n) in (59), therefore, the condition �4(M; n)¿0 yields

�N¿g( �
;M)≡
cos �


√
(((1− �)=2)pE cos �
M)2 + � − cos2 �
(�+ (1 + ((1− �)=2)pE)M)

1− cos2 �
 (69)

For supersonic �ows with M¿1 + ”M , �=0 and �=1, hence (69) becomes

�N¿g( �
;M)=
cos �
 − M cos2 �


1− cos2 �
 (70)

and in particular �N¿gmax(M), where gmax(M) denotes the maximum of g= g( �
;M) with
respect to �
, for each M . From (70), the determination of gmax(M) yields

@g

@ �

=0 ⇒ cos2 �
 − 2M cos �
+ 1=0 (71)

which leads to

cos �
|g=gmax =M −
√

M 2 − 1; gmax(M)= 1
2(M −

√
M 2 − 1) (72)

Signi�cantly, the same solution for gmax(M) results from the condition �3(M; n)¿0. Conse-
quently,

�N¿ 1
2 (M −

√
M 2 − 1); M¿MM ≡ 1 + ”M (73)

and considering that �4(1; v)= ”M=2, an analogous equality is adopted for �N(MM), leading to
�N(MM)= gmax(MM) + ”M=2.
For subsonic �ows, a numerical analysis of g= g( �
;M) from (70) reveals that g( �
;M)¡0:3

for all �
 and M¡MM . Additionally, for an isotropic acoustic upstream for vanishing M ,
�N(0)=1 and @�N=@M |M=0 =0, whereas for M¿MM both �N and its derivative with respect
to M follow from (73). A smooth variation for �N = �N (M) that satis�es �3;4(M; n)¿0 in (62)
along with all of these constraints is the composite spline

�N(M)≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(�N

′
M MM − 2�N

M + 2)
(

M
MM

)3
− (�N

′
M MM − 3�N

M + 3)
(

M
MM

)2
+ 1; 06M¡MM

1
2

(
1 +

”M

MM −√M 2
M − 1

)
(M −

√
M 2 − 1); MM6M

(74)

where superscript prime ‘′’ denotes di�erentiation with respect to M and subscripts ‘M ’ in
both �N

′
M and �N

M indicate their respective magnitudes at M =MM from the second expression
in (74).
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6.5. Variations of streamline eigenvalues and upstream-bias functions

As Figure 4 shows, the streamline upstream-bias eigenvalues �1;2 as well as �4, respectively,
from (64), (63), and �3, from (60), remain positive. Furthermore, these eigenvalues and their
slopes remain continuous for all Mach numbers. For 06M61 + ”M , the eigenvalues �1;2,
�3, �4 smoothly approach 1 for vanishing M , indicating a physically consistent upstream-
bias approximation of the acoustic equations with matrix (39) embedded within the Euler
equations. For M¿1+”M , these eigenvalues, respectively, coincide with the Euler �ux Jacobian
streamline eigenvalues M , M + 1, M − 1, which corresponds to a streamline upstream-bias
approximation of the entire �ux vector, for supersonic �ows. A smooth transition takes place
in the critical sonic region within a transonic layer, where �4 does not vanish, but remains
not less than ”M=2.
The variations of �= �(M), �N = �N(M) and �= �(M) in Figure 5 indicate that these three

functions as well as their slopes remain continuous for all Mach numbers.
This �gure indicates that 06�; �N ; �61 and �≡ 0 for M¿ 1

2 + ”M , �≡ 0 for M60:4, and
�≡ 1 for M¿1+ ”M . The variation of �= �(M) shows that the pressure-gradient contribution
to this upstream-bias formulation increases monotonically, while remaining less than 25% of
its maximum, for 06M60:7. As �= �(M) rises, the streamline upstream bias � contribution
from the corresponding acoustics matrix decreases rapidly, reducing by 75% at M =0:39.
The decrease of �N , hence of the cross�ow upstream bias is less rapid because this is the

only contribution to a cross�ow upstream. The function �N , nevertheless, decreases by 50%,
at the sonic state, and by 80% for M =1:8. For this function, forcing non-negativity of �3;4 as
opposed to equality to a prescribed positive constant, in particular, ensures minimal cross�ow

Figure 4. Upstream-bias eigenvalues.
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Figure 5. Upstream-bias functions.

di�usion. Expression (74) leads to the conclusions

lim
M→∞

�N(M)=0; lim
M→∞

@�N

@M
=0 (75)

which indicate that the magnitude of cross�ow upstream decreases with increasing M . This
result agrees with the physics of high-M �ows, where the bi-modal propagation region narrows
about the cross�ow direction. Convection thereby becomes the prevailing wave propagation
mechanism, which therefore reduces the need for acoustic cross�ow upstream bias.

6.6. Polar variation of upstream bias

Figures 6–9 present the directional variation of the upstream bias eigenvalues (59) for repre-
sentative subsonic and supersonic Mach numbers. These variations are obtained for a variable
unit vector n≡ (cos 
; sin 
) and �xed unit vector a= v, in this representative case inclined by
+30◦ with respect to the x1-axis.
These �gures collectively indicate that the characteristics �ux divergence (53) induces a

physically consistent upstream bias because for any Mach number and wave propagation
direction n the associated upstream-bias eigenvalues (59) remain positive and their direc-
tional variation mirrors the directional variation of the characteristic Euler eigenvalues (15).
The upstream-bias eigenvalues, moreover, are symmetrical about the cross�ow direction and
characteristic streamline, precisely like the characteristic Euler eigenvalues. For M =0:05,
the directional variation of the upstream-bias eigenvalues in Figure 6 correlates with that in
Figure 2 and thereby corresponds to an isotropic upstream bias, in complete agreement with
the isotropic acoustic wave propagation speed in the Euler equations.
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Figure 6. Polar variation of subsonic upstream bias.

Figure 7. Polar variation of supersonic upstream bias.

For increasing Mach numbers, the upstream bias becomes anisotropic, again in agreement
with the anisotropic distribution of the Euler eigenvalues (14). For M =0:5 this anisotropy is
already evident and then becomes more marked for supersonic Mach numbers as indicated in
Figure 7, which correlates with Figure 3. In particular, the cross�ow upstream bias decreases
for increasing Mach number.
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Figure 8. Polar correlation of subsonic characteristic �
E

3 and upstream �3.

Figure 9. Polar correlation of supersonic characteristic �
E

3 and upstream �3.

Figures 8 and 9 compare the directional variations of the representative upstream-bias eigen-
value �3 and the corresponding Euler eigenvalue �

E

3. This comparison is su�cient to depict the
correlation between all the Euler and upstream-bias eigenvalues, for �1;2 and �

E

1;2 are topologi-
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cally similar to each other, compare Figures 3 and 7, while �4 and �
E

4 are, respectively, mirror
skew-symmetric to �3 and �

E

3 with respect to the cross�ow direction. As Figures 8 and 9 in-
dicate, �3 is symmetrical about the characteristic streamline, precisely like the corresponding
characteristic Euler eigenvalue �

E

3 and the corresponding polar curve is topologically similar
to the Euler eigenvalue curve. For M =0:05, �3 and �

E

3 virtually coincide with each other and
remain direction invariant, which corresponds to an isotropic upstream bias in correlation with
the acoustic speed. For M =0:5, Figure 8 indicates that �

E

3 is greater than �3 in the streamline
direction.
For supersonic Mach numbers, �3 in the streamline direction coincides with M + 1. As

shown in Figure 9, therefore, the magnitude of the upstream bias for supersonic �ows is
virtually identical to the magnitude of the characteristic eigenvalues, within the domain of
dependence and range of in�uence of any �ow �eld point.
Outside this region, the upstream-bias eigenvalues are modestly less than the characteristic

eigenvalues. In these variations, the upstream-bias eigenvalues are vanishingly small in the
cross-�ow direction, which, in particular, corresponds to minimal cross�ow di�usion.

7. CONCLUDING REMARKS

This paper has presented an acoustics–convection upstream resolution formulation computa-
tionally to solve the Euler and Navier–Stokes equations with general equilibrium equations of
state. Relying upon the physics and mathematics of multi-dimensional characteristic acoustics
and convection, the formulation induces the upstream bias directly at the di�erential equation
level, before any discrete approximation, by way of a characteristics-bias system and associated
decomposition of the Euler �ux Jacobian into convection and streamline as well as cross�ow
acoustic components. As the second paper of this series details, a traditional Galerkin �nite
element discretization of the characteristics-bias system directly provides a genuinely multi-
dimensional upstream-bias approximation of the Euler and Navier–Stokes equations.
The magnitude of the streamwise and cross�ow upwind dissipations in this formulation re-

main di�erent from and independent of each other; the streamwise dissipation increases with
the Mach number whereas the cross�ow dissipation decreases with increasing Mach num-
ber. The acoustics–convection upstream resolution algorithm provides an intrinsically multi-
dimensional upstream-bias approximation for the Euler equations and along all the in�nite
directions of wave propagation, the formulation induces anisotropic and variable-strength con-
sistent upwinding that correlates with the spatial distribution of characteristic velocities.
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